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The dynamic problems on the bending of a rectangular slab whose lateral sides 
are hinge-fixed are studied. A mixed boundary condition is given on the upper 
face, and the lower face is a) hinge-fixed, b) clampled, c) simply support- 
ed. The problem of bending of a rectangular slab with initial conditions in 
the middle plane of the sla5 is studied analogously. A mixed boundary condit- 
ion is given on the upper face, while the lateral and lower faces are hinge-fix- 
ed. The mixed boundary value problem is reduced to a conjugate series by 
separation of variables. Analogously to [l, 21, the conjugate series is reduced 
to a certain singular algebraic system of the first kind, which is then inverted 
exactly [3], and a new infinite algebraic system of the second hind is obtain- 
ed. To overcome technical difficulties, a special approximation is introduced 
for the function in the first relationship in the conjugate series. The asymptot- 
ic properties of the infinite algebraic system obtained are studied. It is shown 
that the system is quasiregular for all the parameters in the problem. On the 
basis of the preceding, the possibility of raising the efficiency of the method 
is investigated and a domain of parameters for most efficient operation of the 
method is isolated for the problems being studied. The numerical material ob- 
tained verifies the high efficiency of the method in a quite extensive range of 
parameter variation. The results of a numerical analysis are presented in the 
form of graphs. The quution of the eigenfrequencies of the problems posed is 
not examined. 

1. Let us consider a rectangular plate of length 2b and height H . In conform- 
ity with the Kirchhoff theory the plate vibration eouation has the form II41 

(1.1) 

Here W (3, Y, t) is the plate deflection, D is its bending stiffness, and q (x, 
Y, t) is the normal load. Furthermore, we assume that q (5, Y, t) = 0. To investi- 

gate the harmonic oscillations of the plate, we seek the solution of (1.1) in the fotm 

w W Y, t) = w (5, Q) I?-+ (1.2) 

Let us examine three versions of the boundary conditions on the lower face of the 
plate [4> 

(1.3) 
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(b) w (x, H) = w ( x, 0) = WY’ (5, 0) = 0 (I 5 1 \( b) 

Mll (x9 H)=O (--b<x<--a, a<x\(b) 

WY’ ix, H) = 6 (3) (I x 1 < a) 

(c) w (5, m = M, (x7 0) = 0, (x, 0) = 0 (I x 1 < b) 
M,, (x:, H)=O (--b,<x<----a, a<x,(b) 

W bl’ (5, H) = 0 (5) (I 3 j < a) 

Furthermore, for simplicity we have set 8 (x) = 8 = const. After substituting 

(1.2) into (Ll), we obtain an equation for the function w = w (5, y) 

DAAw - pIiXO*w = 0 

In order to satisfy the hinge-fixing on the lateral faces of the plate, we see the 
solution of this equation in the form 

w&y)= 2w&os[ z(t2;2n) z] (1.4) 
llZ=O 

Upon compliance with boundary conditions of the form a) - c), the mixed probl- 
em is reduced to the following conjugate series (4 (E) is the desired reactive moment 
at the support, and a, p are dimensionless geometric parameters): 

; QnOK (r&h) cos au&r = 1 (I x I f a) (1. 5) 

5 qno cos au,5 -0 (-b.<x<-u, a<x\(b) 
a=0 

1 

u, = n(1 + 2n) 
2b 7 %I0 = h s go (5) cm aura a5 

-1 

q (E) = p (Au)-‘DOq” (E), h = a / b, p = h I b 

For the problems a> - c) the function K (u) has the form 
a) K (u) = x-s lo, cth u1 - u2 cth a,1 
b) K (u) = 2K2 b,cr, (1 - ch u1 ch uJ + u2sha, sh uSI R (1.4 
R (u) = [ul ch u1 sh u1 - u2 ch u2 sh 0,1-~ 
c) K (u) = 2x-2R (7.4) {ala2 [ (1 - $2 u4 - +I + 

u2 sh u1 sh u2 [(I - Y)” u4 - 
(1 - 2%)) x41 - u,u2 chu, ch CT? [(I - v)~u’+ x41} 

(1. 6) 

R (u) = {a, [(I - Y) u2 - %*I2 ch u1 sh uz - uE I(1 - v) u2 + x212 sh u1 ch u2}-1 

((Jl,? = j&i”, - x2 = H”c., Jf/phlF) 

where x2 is the generalized dimensionless vibration’ frequency. The functions K(U) 
of problems a) - c) are meromorphic in the complex plane u = u + iz and 

have zeros and poles on the real axis for definite values of x . An investigation of 

the function h’ (u) shows that they are all even and possess identical asymptotic prop- 
erties. 
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K (u) -A” -I- 0 (u’), u --f 0 (A” = lim K (u), u + 0) (1.7) 
K (2.4) N u-’ f 0 (u-3), u + CT0 

The properties listed for the functions K (u) afford an opportunity to represent it 
as the ratio of two entire functions 

(1.8) 

where A” is the same as in (1. ‘I), i6, and iyn are the countable quantities of zero- 
es and poles of the functions K (u) in the upper half-plane and a finite number are 
on the real axis. 

2. Let us also consider a rectangular plate of length 2b and height i!I with init- 
ial forces in the middle plane (problem d 1. The differential equation of plate bend- 
ing vibrations has the form [4] 

Here Ntj are the forces acting in the plate middle plane which satisfy the equations 
intheparentheaes, while W, q,D, 9, h arethesameasin(1.1). 

Let us moreover assume that 4 (2, Y, t) = 0. Since harmonic oscillations will 
henceforth be studied, the solution of (2.1) is naturally sought in the form (1.2). The 
boundary ccmditiaar have the form of conditions a) in (1.3). . 

As in Sect. 1, 8 (z) = 8 = con&. We asmme N,, = 0, and introduce the 
notation N 11D’12-1 = qi2 (i = 1, 2). After substituting (1.2) into (2.11, we 
obtain an equation for w (5, y) 

DMw - phdw a 2Dq12 g + 2Dqo2 $ (2.2) 

Later 41 = const everywhere. 
Analogously to Sect. 1, we seek the solution of (2.2) in the form (1.4) in order to 

satMy the hinge-fixing on the lateral faces of the plate. 
By satisfying the boundary conditions a) in (1.3). we reduce the mixed problem 

to the-solution of the conjugate series (1. 51, where the htnction K (u) has the form 
( x isthesameas in(l.6)) 

d\ R (u) =: L-‘/r [a, cth aI - o2 cth $1 

ol, a = vu” + q2a + L’Iz, - L = u2 (Q2’ - 412) + x4 + 4a4 

We examine the case for qi (i = 1, 2) separately. 
Let 1) ql = q3, then the function K (u) is meromorphic in the complex plane 

u=cr+tz, whileincase 2) Qa>Q1 t the fimcticm K (u) has branch points 

in the complex plane for u = fiu*, and in c;ue 3) q1 > qa, the branch plots 
emerge on the real axis U = f U* (U* = t(X‘+ !b4h* - Q42)-1J'9 

AXI investigation of AZ (u) shows that it is even and pamews the =ympbtic pnyr- 
ertiu (1.7). 
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Case U agrees completely with the cases coruLder& in Sect 1. In case 3>, we 
make slits parallei ta the imaginary ax& upward in the right half-p&me and down- 
ward in the left, in the plane u=cr+ir. We fix the branch in the slit plane 
by the condition arg [li: (u)] = 0 as u -+ M. In case 21, the branch points are 
connected by a slit through the infinitely remote point. 

M,oreover, the function iI( (n) is approximated in an arbitrarily small neighbor- 
hood of the real axis by the function frl* (r-t) which is merOmOFphic in the whole 
complex plane and has the asymptotic properties (1.7). Therefore, K* (U) can be 
represented in the form of (1.8). 

3. Taking account of the properties of K (u), the conjugate series (1.5) can be 
reduced to an infinite algebraic system of the form El, 21 

cx = I; (3.1) 

An irregular matrix d is separated ant of the matrix G ) and the system (3.1) 
takes the farm (ym and 6, are the same as in (1.8)) 

AX =BXfF (3.2) 

(3.3) 

Em = exp (- 2y, {I - h) p-l), dl; = exp (-- 26,h$1) 

f .m = - K-1 (0) y; 

Furthermore, inverting the matrix A exactly by using the Wiener - Hopf integral 
operator Cl, 31 and the formula 

we arrive at a system of the second kind 

X = A-IBX (3.5) 

We digress here and investigate the system of the second kind obtained in (1.23, 
since its asymptotic properties will be reqnired later. After regularization, the infin- 
ite algebraic system in [l, 23 takes the form (3.51, where the relations 

A-” zz @EL,), 
P 

&I, = 
(2X - 3)!! (212 - 1)!! 

.3O (2,,1 - 2)!! (211 - 2)!! (211 - 2112 + 1) 

?‘%I = .” (d’)-’ (VZ - ‘i,), dh‘ = R (.47-l k (k, n2 = 1,2, . , .) 

(3.6) 

hold for the approximation K (u) ;==: t,h (A%) a-1 (B = (he) and F ? (fm) 
exactly as in (3.5)). 

Moreover, we investigate the matrix A -rB = G. Its elements have the form 
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The g,k were investigated for large k by using the Euler - Maclauren summat- 
ion formulas and the r&t was [5, S] _ 

The estimates (3.7) permit the assertion that an infinite algebraic system of the 
km (3.5) is quasiregular, and therefore, can be solved by the method of reduction 

c71, 
We later investigate the solution of the conjugate series obtained in (1.23. It was 

written as 

[P(O) + &ch -+h-1 +I (3,8) 
n=1 

where zk are the same as in (3.2) and (3.3). Let us analyze how the parameters in 
the series (3.8) influence its convergence. To do this, we write the n -th term of 
the series (3.8) and we convert it to the form 

c6 x 
xnch -+ 

ab *II * 
ch-’ +- z5 T 

-r/IL e*P i 
(3.9) 

by taking account of the last estimate in (3.7). 
The deductton can be made that the radius of convergence of the series is x < 1. 

For x = ‘l the series (3.8) diverges, but the 18&t mtimpte in (3.7) affords the opport- 
unity to conclude that 4 (5) has a root singubrity for z = 1. It must be noted (this 
follows from (3.9)) that the series will converge more rapidly, i. e., the method will 
perform much better, the greater the a / h and also if 6, > 1 (n = 1, 2, . . .). 
It turns ad that if the approximation 

th eA"cc 
K(u)= u fi I;;;;, $&=t, Eel 

(3.10) 
I 

i=l i=l 

b introduced for the function K (u) , then the zeroee of th &A% by which the 
solution k co&ructe.d, are very large compared to af in such an approtimtion. 
ad &e ze- ai du yield the main contribution to the SOlIdiOn. 

Functions of the form 

sh 2u - 211 ch 21; - 1 - 2u2 
K,(u)= 2~ s@,, ' K-Z(") = u (sh 2u -2u) 

can be a&-Amated on the real axis by the expresston (3.10) with N = 3, where 

41 = 14.042, a, = 5.1949, ,a3 = 80.217, b, = 23.045, bs = 2.4173, b, - 3~3316, 
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and A’= O.%u7 for & fu) , while a, = 1.7086, a, = 4.6173, a, = 66.597, &l = 

11.778, 4 = 2.6227, bR = 1.7008 and A* = 0.5 (e = O.Oi) for Kg (u) . The 
error in the approximation das not exceed 3lo. An approximation method anaiogous 
to that used before was used here (9. 

Numerical computations show that three equations of the infinite system are ruff- 
icient to acquire the accuracy needed (four significant figures) in the approximation 
(3.10) for the same value of 0 I k . It must be noted that the method will operate 
better, the greater the a I h = h J $ (in the h, B plane this is the domain where 

fi Q oh, o > 1). Numerical computations confirm the mentioned deductions. 

x/a f 

Fig. 1 Fig. 2 

The dashed lines in FigsJand 2 represent graphs of the reactive moment at the 
support for 1 = 0.7, @ = 0.25 and h = 0.9, 3 = 0.25, respectivdy,as evaluated by 
using the approximation (3.10) for N = 3. 

4. For the numerical investigation of theproblems posed in Sects. 1 and 2, the 
function K (u) must be approximated, as before, by an expresston with similar asy- 
mptotic properties which is easily factorizable. As noted above, zeroes and poles 
appear on the real axis at a definite generalized frequency x in the function K (s) . 
Tahing account of the experience in [8 - lo], we approximate the function R (u) in 
the neighborhood of the real axis by an expression of the form 

A”=: lim K (a), u - 0; 8 < 1 

l ) zelentrov. V. B., Method of conjugate series - equations in the pmblem on the 
bending of a circular plate with mixed fixing conditions. Mixed Problems of the 
Mechanics of a Deformable Body. All-Union Scientific Conference. Abstracts of 
Reports, P&2. Rostov-on-Don* 1977. 
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by extracting th8 woes and poles onthe ma1 axis. 
As before, here g,, & are the zeroes and polar on the real axis, &f, bt are app- 

roximation parameters, and N3, N4 are the quantities of approximation parameters. 
Clearly N!. -+ N, = N, -+- N&. Taldag into account that the tern and poles of the 
approximation functions in the fkst relation of the conjugate se&s (1.5) have an iden- 
tical arymptotk by number, it cau be asusted that ail the eetimates (3.7) will be true 
to the accnracy of some constants for the sy&rn (3.5) as w&l. Therefore, the system 
(3.5) is qua&regular and can be solved by the method of reduction PI. 

A numedcal example was calculated for each problem a) - c). After hiving 
given the generalized frequency x = 5 , approximations were found for the functions 
K (u) of problems 4 - d) for e = 0.01, and are pnrentcd in the table. 

An example for the problem d) was also examined for QZ’ = 5, qs’ = 0 and x * 
5. The zem and pole on the real axis are g, = 3.196407 and & = 3.703872, 

Comparing the e, (the phase velocities of the reactive moment) br problems @and 
d) we see that the initial forcer qs influace the phase v&ocitics of the mactive 
moment more stsqly. Table 1 

a) b) 

0.2592 0.08698 0.09565 
1 1 2 
3 3 3 

- - 

- 

3.3732 

3.8898 

2.0786 
- 

3.3732 

95.009 179.17 
0.6773 i .oa75 
3.0166 4.3380 

18.2Q6 2.964i 
0.7771 1.1968 

11.847 14.682 

1.5883 
4.7454 
2.7352 
4.ai67 

326910 
15.598 
6.9051 
5.3570 
6.8834 

582Q 

d) 

O.i833 
i 
3 
0 

5 
2.7840 

3.4283 
- 

224.48 
0.6773 
3.0166 
1.9296 
0.7711 

24.794 

All the approximations have been obtainrrd with 1~8 than 3% error on the wttofe. 
real axis. Keeping all the remarks made in Sect, 3 relative to the cf%ciency of 
the method in mind, for the approximations made here it it posPibk to limit oneqelf 
to N, + Nt equations of the infinite system in order to achieved the needad accuracy 
in a broad range of variation of the pzmnden 1,& This suggests ibat 0 S#~IB of 
moderate o&r tild cerWnly not be averted exactly by means of (3.4 and (3,5f 
(thfr lart re fn awkward fm for the ekment~ of the matrix A-’ ), but it can 

be iuverted numerically on an computer. MuIt& of computations did not discWe any 
discrepancy in accuracy between the numcsnIcal and exact inversions in aB the probl- 
ems ooived here. 
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The solution of the conjugate series CL 5) for 4 (2) is given by formula (3.81, where 
6 n = (%. a2, a^,, &, m tA”P), 12 1 G 1 (4.2) 

and t= 1 for problems a), b), d) and 1 = 2 for problem c). The solid lines, pres- 
ented as an illustration in Fig. 2 and 3, are graphs of the changes in Re q (5) for prob- 
lems a) - d), respectively, for h = 0.7, fl = 0.25 and h = 0.9, B =: 0.25. The 

singularity in q (4 at 5 = 1 can be isolated similarly [ll]. However, there is no 
special need for this since the ~ngula~ty only appears very near the edge of the supp- 
ort. This easily noted in an analysis of (4.1) and (4.2). 

Attention is turned to the fact that in mechanically more stiff systems the zeroes 
and poles emerge later on the real axis than in less stiff systems as the generalized fre- 
quency i.ncrcascs. Use of the Kirchhoff -Love model equations for higher generalized 
vibration frequencies (X > 5} can raise some doubts. Hence, it is more expedient to 
use more exact applied models of slab bending [4] at high frequencies, 
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