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The dynamic problems on the beading of a rectangular slab whose lateral sides
are hinge-fixed are studied, A mixed boundary condition is given on the upper
face, and the lower face is a) hinge-fixed, b) clampled, c) simply support-
ed. The problem of bending of a rectangular siab with initial conditions in
the middle plane of the slab is studied analogously. A mixed boundary condit-
ion is given on the upper face, while the lateral and lower faces are hinge- fix-
ed. The mixed boundary value problem is reduced to a conjugate series by
separation of variables. Analogously to [1, 2], the conjugate series is reduced
to a certain singular algebraic system of the fimst kind, which is then inverted
exactly [3], and a new infinite algebraic system of the second kind is obtain-
ed. To overcome technical difficulties, a special approximation is introduced
for the function in the finst relationship in the conjugate series. The asymptot-
ic properties of the infinite algebraic system obtained are studied. It is shown
that the system is quasiregular for all the parameters in the problem, On the
basis of the preceding, the possibility of raising the efficiency of the method
is investigated and a domain of parameters for most efficient operation of the
method is isolated for the problems being studied. The numerical material ob-
tained verifies the high efficiency of the method in a quite extensive range of
parameter variation, The results of a numerical analysis are preseated in the
form of graphs, The question of the eigenfrequencies of the problems posed is
not examined,

1. Let us consider a rectangular plate of length 2b and height H . In conform-
ity with the Kirchhoff theory the plate vibration equation hag the form [4]

S
DAAW — ph g = ¢ (z,, 1) 1.1

Here W (z, Yy, ?) is the plate deflection, D is its bending stiffness, and ¢ (z,
y, t) is the normal load. Furthermore, we assume that g (7, y, ) = 0. To investi-
gate the harmonic oscillations of the plate, we seek the solution of (1. 1) in the form
w(z, ¥y, &) =w(z, y)e o (1.2

Let us examine three versions of the boundary conditions on the lower face of the

plate [4]}:
a) w(zx, H) = w (=, 0)==M,,(:c, =0 (|x|<b) (1.3)

Mz, =0 (—b<z<L —a aLz<h)
w (@, H)=0@) (z|<a
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Dw@ H=w( O)=w/(z, 00=0 (z|<d)
My(z, Hy=0 (b <z < —a, a<lz<Db
wy' (z, H)=06() (z|<a)
(ywiz, H)=My(z, 0) =0Qy(z, 0) =0 (Jz|< )
My(z, Hy =0 (—=b<<2z<{—a, a< z< b
wy (z, H)y=6() (z]< 9
Furthermore, for simplicity we have set 0 (z) = 8 = const. After substituting
(1.2) into (1, 1), we obtain an equation for the function w = w (z, y)
DAAw — pho*w = 0

In order to satisfy the hinge-fixing on the lateral faces of the plate, we see the
solution of this equation in the form

w(x,y):an(y)cos [Liz':—z-n—)x] (1. 4)
N=0
Upon compliance with boundary conditions of the form a) — c), the mixed probl-
em is reduced to the following conjugate series (g (&) is the desired reactive moment
at the support, and A, f are dimensionless geometric parameters):

gn°K (uph)cosaup,z =1 (2] a) (1.5

gilcosau,z =0 (—bLz<{—a, alz))

inas ibze

1
Uy = = (12;- 20) ' Qno =2 S qo (§) €os aun§d§
|

7(8) =P (Aa)7DO¢° (§), A=alb, P="0h/b
For the problems a) — c) the function K (u) has the form

a) K (u) = »™* |0, ¢th 0, — 0, cth 0,] (1. 6)
b) K (u) = 2x72 [0,0, (1 — ch o, ch 6,) -+ u?sho, sh 6,] R (u)
R (u) = lo, ch 0, sh 6, — g, ch 0, sh o,]
©) K (u) = 2x2R (u) {0,0, [(1 — v)? ut — v4] +

u?sh 0, sh o, [(1 — v)2 ut —

(1 — 2v) #*] — 0,0, cho, ch g, [(1 — V)2ut-4- x4}

R (u) = {0, [(1 — v) u* — %*]* cho, sh 0, — 0, [(1 — v) u? + %?)?sh o, ch g,}!

(01,0 = VT =22, #2 = H V phD™)

where x? is the generalized dimensionless vibration frequency. The functions K (1)
of problems a)— c) are meromorphic in the complex plane u = ¢ - it and
have zeros and poles on the real axis for definite values of % . An investigation of
the function K (u) shows that they are all even and possess identical asymptotic prop-
erties,
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K(u) ~4°4+ 0 ), u—0 (4° = lim K (u), u—>0) (1.7)
K@ ~ut+0wW?, u-oo
The properties listed for the functions K () afford an opportunity to represent it
as the ratio of two entire functions

Py (u2) T 44w
K@ =4 -21) _ o] 5% (1.8)
Py () img 1 udy3?
where A° is the same as in (1.7), i0, and iVn are the countable quantities of zero-
es and poles of the functions K (u) in the upper half-plane and a finite number are
on the real axis,

2, Let us also consider a rectangular plate of length 2b and height & with init-
ial forces in the middle plane (problem d ), The differential equation of plate bend-

ing vibrations has the form [4]
a2 o2 2
DW—Ph%=N11%+2N127;%+N22%+4 (2.1
aN. , ON. anN ON.
( dzu ™ 6ym =0, —da:ll+ 0;2 =0>

Here N;; are the forces acting in the plate middle plane which satisfy the equations
in the parentheses, while w, q, D, p, k are the same as in (1, 1).

Let us moreover assume that ¢ (Z, ¥, t) = 0. Since harmonic oscillations will
henceforth be studied, the solution of (2, 1) is naturally sought in the form (1. 2), The
boundary conditions have the form of conditions a) in (1. 3).

As in Sect, 1, 6 (z) = 0 = const. We assume N;; = 0, and introduce the
notation N;; D727 = ¢,2 (i = 1, 2). After substituting (1.2) into (2,1), we
obtain an equation for w (z, y)

DAAW — pho*w = 2Dg;* o2 + 2Dgy? %:4 (2.9

Later ¢; = const everywhere.

Analogously to Sect. 1, we seek the solution of (2.2) in the form (1. 4) in order to
satisfy the hinge-fixing on the lateral faces of the plate,

By satisfying the boundary conditions a) in (1.3), we reduce the mixed problem
to the solution of the conjugate series (1. 5), where the function K (u) has the form
( % is the same as in (1, 6))

d\ K (u) = L-"[0, cth 6, — 0 cth 0yl
o, =YW@+ g2 £L", L=u*(g’—a’)+%+ gt

We examine the case for ¢; (i = 1, 2) separately.
Let 1) g, = gy, then the function K (1) is meromorphic in the complex plane
4 =6 ivr, while incase 2) gz_>¢r , the function K (u) has branch poiats
in the complex plane for u = -tiu*, and in case 3) ¢, > g, the bra'qch points
emerge on the real axis u = == u* (u* = [(x*+ 428 )(g,® — @27,
An investigation of K () shows that it is even and possesses the asymptotic prop-
erties (1. 7).
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Case 1) agrees completely with the cases considered in Sect, 1. In case 3), we
make slits parallel to the imaginary axis, upward in the right half-plane and down-
ward in the Jeft, in the plane u = 0 - it . We fix the branch in the slit plane
by the condition arg [K (u)] = 0 as y — co. In case 2), the branch points are
connected by a slit through the infinitely remote point.

Moreover, the function K (u) is approximated in an arbitrarily small neighbor-
hood of the real axis by the function K* (u) which is meromorphic in the whole
complex plane and has the asymptotic properties (1,7). Therefore, K* (u) can be
represented in the form of (1. 8),

3, Taking account of the properties of K (u), the conjugate series (1, 5) can be
reduced to an infinite algebraic system of the form [1, 2]

CX =F .1
An irregular matrix A is separated out of the matrix C , and the system (3, 1)
takes the form (Ym and 0, are the same as in (1, 8))

AX =BX + F (3.2
A=t} = {In—28)"% B={bm} F={n}h X={n)}
20y (e + dy)

bk = e U 2 i — 7D @9

tm = eXP(— 29m (1 — A) B71),  dy = exp(— 28,AB™)
fm=— K (0)vm

Furthermore, inverting the matrix A exactly by using the Wiener — Hopf integral
operator [1, 3] and the formula

{rm — 871} = {EZ (3m)) K. (— 82) (¥ — 8 @9
we arrive at a system of the second kind
X = A-1BX 4 A-IF (3, 5)

We digress here and investigate the system of the second kind obtained in (1, 2],
since its asymptotic properties will be required later, After regularization, the infin-
ite algebraic system in [1, 2] takes the form (3. 5), where the relations

(2m — M (20 — H
A Cm 202 — 2N (21— 2m - 1)

Voo = XAV m— 1), & =n(dYk (k,m=142,..)

_ o o
Al = {anm‘h Ay =

(3.6)

hold for the approximation K (u) =~ th (4°%) u~! (B = {bx} and F = {f}
exactly as in (3, 5)).
Moreover, we investigate the matdx A-'B = G. Its elements have the form

ko]

o
Enx = Z By
mat nmYmk
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The gnx were investigated for large k by using the Euler — Maclauren summat-
ion formulas and the result was [5, 6]

My | A/ lnk A .

gﬂk~T+ Oﬁm), k>1, .‘111<°° (3-7)
M, ./ lon ,

&nk V_'T- +0(_n V;l.>’ n>17 1}12<°°
M Inn

Iy~ =3 40 - AW = {

n -'}'I‘I. + (I_L‘Vfﬂ /y "1 F lk}, ]"I3<OO

The estimates (3, 7) permit the assertion that an infinite algebraic system of the
form (8.5) is quasiregular, and therefore, can be solved by the method of reduction
(1. '

We later investigate the solution of the conjugate series obtained in [1,2]. It was
written as w
a A _ ~ ad_z _, ab
Wq(x)=—’é-[K‘(0)+anch - cht ,"] (3.8)

13
n=1

where Z; are the same as in (3,2) and (3,3), Let us analyze how the parameters in
the series (3, 8) influence its convergence. To do this, we write the n-th term of
the series (3. 8) and we convert it to the form

ada o oad, M 8,1 |
= ch™? = 'V% exp (—T(i ——:1:)) + (3.9)

0 (exp <——?;i(1 —+ 1)>>
n>1, M<

Z,ch

by taking account of the last estimate in (3, 7),

The deduction can be made that the radius of convergence of the series is < 1.
For z == 1 the series (3. 8) diverges, but the last estimate in (3.7) affords the opport-
unity to conclude that ¢ () has a root singularity forz = 1. It must be noted (this
follows from (3. 9)) that the series will converge more rapidly, i.e., the method will
perform much better, the greater thea / hand also if §,>1 (n = 1, 2, ...).
It tums out that if the approximation

(3.10)

N
theAd®u H 1% 4~ a;2

N
(112
K )= ” B B2 SH_'biz =1, e<£l
i==1

i=]1
is introduced for the function K (u), then the zeroes of th €d4°u, by which the

solution is constructed, are very large compared to a; in such an approximation,
and the zeroes ¢; will yield the main contribution to the solution.

Functions of the form

, sh 2u — 2u A ch 2 — { — 2u2
K= —5ame 0 KW =TGrm =)

can be ap; -svimated on the real axis by the expression (3.10) with N = 3, where
a, = 14.042, g, = 5.1949, a5 = 80.217, b, = 28.045, b, = 2.4173, by = 8.8316,
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and A° = 0.6667 for Ky (u) , while a;, = 1.7086, a, = 4.61473, ay = 66.597, b, =
14.778, by = 2.6227, b. = 1,7008 and A4°= 0.5 (e = 0.04) for K, (u) . The
error in the approximation does not exceed 3%, An approximation method analogous
to that used before was used here (¢),

Numerical computations show that three equations of the infinite system are suff-
icient to acquire the accuracy needed (four significant figures) in the approximation
(3, 10) for the same value of g/ h . It must be noted that the method will operate
better, the greaterthe a/h=1/§ (inthe i, B plane this is the domain where

p < ah, @ > 1). Numerical computations confirm the mentioned deductions,

48 60

Req Reg®
b - / c

Fig.1 Fig. 2

The dashed lines in Figs.1and 2 represent graphs of the reactive moment at the
support for & = 0.7, p = 0.25 and A = 0.9, § = 0.25, respectively,asevaluatedby
using the approximation (3, 10) for N = 3.

4, For the numerical investigation of theproblems posed in Sects.1l and 2, the
function K (u) must be approximated, as before, by an expression with similar asy-
mptotic properties which is easily factorizable, As noted above, zeroes and poles
appear on the real axis at a definite generalized frequency % in the function X (u} .
Taking account of the experience in [8 — 10], we approximate the function X {u) in
the neighborhood of the real axis by an expression of the form

]V; N; N: N4
K (u)= theA® H (u2 — L2 H (u2 —£.2) H (ut +a2) H (u2 + b2y (4.1)

u ;
fexy f==3 i==) ==}

A°=limK(u), u—0;, e

*) Zelentsov, V, B.,, Method of conjugate series - equations in the problem on the
bending of a circular plate with mixed fixing conditions, Mixed Problems of the
Mechanics of a Deformable Body. All-Union Scientific Conference, Abstracts of
Reports, Pt,2, Rostov~-on-Don, 1977,
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by extracting the zeroes and poles onthe reai axis,

As before, herte &, ¢, are the zeroes and poles on the real axis, «;, b; are app-
roximation parameters, and ;, N, are the quantities of approximation parameters,
Clearly N, 4+ N3 = N, 4+ N,. Taking into account that the geroes and poles of the
approximation functions in the first relation of the conjugate series (1. 5) have an iden-
tical asymptotic by mumber, it can be asserted that all the estimates (3. 7) will be true
to the accuracy of some constants for the system (3. 5) as well. Therefore, the system
(3. 5) is quasiregular and can be solved by the method of reduction [7].

A numerical example was calculated for each problem a) — c), After hhving
given the generalized frequency x = 5 , approximations were found for the functions

K (u) of problems a) — d) for & = 0.0, and are presented in the table,
An example for the problem d) was also examined for > = 5, ¢, = 0 and x =
5. The zero and pole on the real axis are §, = 3.196407 and {, = 3.703872.
Comparing the &, (the phase velocities of the reactive moment) for problems a)and
d) we see that the initial forces ¢, influence the phase velocities of the reactive

moment more strongly. Table 1
a) bl cl) &
A° 0.2592 0.08698 0.09565 0.4833
N1= N2 1 1 2 1
Ny=N, 3 3 3 3
9t . - - 0
'H - - - 5
& 3.3732 2.0786 1.5883 2.7840
g - - 4.7454 -
& 3.8898 3.37132 2.7352 3.4283
& - — 4.8167 —
a4 95.009 179.17 326010 224.48
az 0.6773 1.0875 15.588 0.6773
a3 3.0166 4.3380 6.9051 3.0166
by 18.296 2.9641 5.3570 1.9296
by 0.7714 1.1968 6.8634 0.7
by 14.847 14.682 54729 24.794

All the approximations have been obtained with less than 3% error on the whole-
real axis, Keeping all the remarks made in Sect, 3 relative to the efficiency of
the method in mind, for the approximations made here it is possible to limit oneself
to Na + Ns equations of the infinite system in order to achieved the needed accuracy
in a broad range of variation of the parameters A, B. This suggests that a system of
moderate order should certainly not be inverted exactly by means of (3.4) and (3. 5)
(this last results in awkward formulas for the elements of the matrix 4~ ), but it can
be inverted numerically on an computer, Results of computations did not disclose any
discrepancy in accuracy between the numerical and exact inversions in all- the probl-
ems solved here,
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The solution of the conjugate series (1. 5) for ¢ (#} is given by formula (3, 8), where
8n = {ay, a, a;, i&;, nn (4%)7Y), |z] <1 (4.2)

and l= 1 for problems a), b), d)and =2 for problem c). The solid lines, pres-
ented as an illustration in Fig, 2 and 3, are graphs of the changes in Re ¢ (z) for prob-
lems a)-— d), respectively, for A=0.7,8=0.25 and &= 0.9,8 = 0.25. The
singularity in ¢ (z) at z = 1 can be isolated siinilarly [11]. However, thereis no
special need for this since the singularity only appears very near the edge of the supp-
ort, This easily noted in an analysis of (4, 1) and (4, 2).

Attention is turned to the fact that in mechanically more stiff systems the zeroes
and poles emerge later on the real axis than in less stiff systems as the generalized fre-
quency increases, Use of the Kirchhoff —Love model equations for higher generalized
vibration frequencies (x >> 5) can raise some doubts, Hence, it is more expedient to
use more exact applied models of slab bending [4] at high frequencies,
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